
Generating the Good XML Schema from Relational Database by

using String Matching Algorithms

Myint Myint Lwin, Thi Thi Soe Nyunt, Yuzana

University of Computer Studies, Yangon

lwin.myintmyint@gmail.com,thithisn@gmail.com,yuzana@gmail.com

Abstract

 Data exchanging is involving as an important

role in the Web application and Extensible

Markup Language (XML) is also accepted as the

standard for exchanging information between the

heterogeneous systems. The XML schema acts as

the standard format between the sender and

receiver for the XML documents. As a result, the

design of the schema document is very important

because most of the XML documents are

validated with their schema. In this paper, the

two string matching algorithms (Maximum

Consecutive Substring at right and any) are

proposed for detecting the common attributes in

the relations. Then, these string matching

algorithms are applied for detecting the common

attributes in the relations. The similar attributes

are grouped and converted as element group in

XML schema document for converting the

relational database to XML schema document.

The resulted XML schema is more modular;

more understand for the human readers and

reduce the maintainability effort.

1. Introduction

 Nowadays, Web applications are very

popular and XML is also tightly couple with the

Web. XML is the standard language and useful

for the exchanging information over the Internet.

The main advantages of XML are text-based and

structured format of data. In real world, most of

data are stored in relational database because of

many users are familiar with the relational

database. They cannot dispensable the relational

database because it is the mature technology and

has many advantages such as concurrency and

data consistency etc. On the other hand, the Web

technology is currently popular and useful in

business applications that are based on the Web

technology. Some business’s information and

data are required to convert into the XML format

for exchanging data between the business

organizations. However, converting to XML

format from RDB is non-trivial task.

 Many researchers have been proposed and

presented the various converting methods

between XML format and relational database.

They considered the different point of views

such as structural or semantic. But the earlier

converting methods did not consider the good

XML schema design (maintainability effort or

understanding of human reader). This paper

presents the efficient converting method and

generates the good XML schema by considering

the important design factors.

 This paper presents about introduction in

section 1. The section 2 describes the related

works. The background theory of XML and

motivation are presented in section 3 and 4. In

section 5, the architecture of the proposed system

is described and concludes in Section 6.

2. Related Works

 Many translation methods have been

proposed taking into account structural and/or

semantic aspects [8]. Flat Translation (FT) is the

simplest translation method which converts

relations to XML. In this method, each relations

is converted into an element (E) and each

relation attributes is either converted to a

subelement (element approach) or attribute

(attribute approach) of E. It is not efficient

because it does not apply nesting idea. Nesting-

based Translation (NeT) [5] was proposed to

solve the problems found in FT. It utilized the

nested structure from the flat relational model by

using the nest operator such as “*” and “+”. As a

result, the resulting DTD is more efficient and

useful for decreasing data redundancy. However,

NeT considers tables one at a time and cannot

provide a whole relational schema where many

relations are interconnected with each other

through various other dependencies. FT and NeT

are structured method and they did not consider

the semantic aspects. Constraints-based

Translation (CoT) algorithm [6] was developed

to solve the problem occurred in NeT. It uses

Inclusion Dependency (INDs) of relational

schema which based on the foreign key

constraints. It is mostly associated with the usage

of sub-elements and IDREF attributes for

translation purpose. Moreover, it considers not

only the structural part such as tables and

columns but also the semantic part such as

constraints and referential integrity (RI). But it

can only provide the explicit RI. If the implicit

RI exists, it cannot produce an exact XML

document. The ConvRel algorithm [3] detects

the relation between tables and extracts the

referential integrity by applying the idea of

parent-child relationship. It can provide the N:M

relationships modeled as a combination between

a nested structure and keyref. All of the above

algorithms did not evaluate complexity of their

resulted XML schema documents and did not

consider the reusability and maintainability

effort. The proposed system considers the all

aspects of structural, semantic and

maintainability efforts. The quality of XML

schema documents includes size of the

document, line of code, number of simple type or

complex type etc. Finally, Dilek Basci and

Sanjay Misra [4] proposed also a metric called

Schema Entropy (SE) metric based on entropy

concept. Although many measuring metrics are

developed to measure the quality of XML

schema documents, all of above papers did not

measure their schema complexity. The SE

metrics is developed to measure the complexity

of XML schema document and for the good

XML schema design that reduces the

maintainability efforts.

 This paper proposed the good design for

XML schema documents to reduce the large

amount of maintainability effort by using the

three string matching methods for grouping the

same attribute. Moreover, it can provide more

structure and reduce the maintainability efforts.

3. Theory Background

 XML is the most suitable language for Web-

based data exchange and XML schema also acts

as the major role in the World Wide Web

application. The XML instance documents can

be validated against the associated schema

definition. An XML Schema is a document

which describes the rules for XML document. A

structure of an XML document can be defined as

Document Type Definition (DTDs), XML

Schema Definition (XSD), XML Data Reduced

(XDR). The most popular XML schemas are

DTD and XSD.

3.1. The role of the XML schema on the

Web

 XML schema is essential that both parts have

the same expectations about the content when

sending data from a sender to a receiver. With

the XML schema, the sender can describe the

data in a way that the receiver will understand.

3.2 Important design factors of good

XML schema

 As the consequence of converting the data

from relational database into XML format, the

efficient converting methods are required. In

paper [10] described the important design factors

as following.

 (i) Information preservation: it is fundamental

for converted XML Schema that should be

retained structural and semantic information of

the relational database entirely.

 (ii) Highly nested structure: nesting is

important in XML documents because it allows

navigation of the paths in the document tree

structures to be processed efficiently.

 (iii) No redundancy: there is no data

redundancy in the XML documents that conform

to the target XML schema, thus no inconsistency

will be introduced while updating the XML

documents.

 (vi)Consideration of dominant applications:

the structure of XML document should be

enough or compatible with the dominant

applications can be guaranteed to be processed

efficiently.

 (v) Reversibility of design: the original design

can be obtained from the target XML schema,

which is fundamentally important to data

integration.

4. Motivation

 Traditionally, a lot of data are stored in

relational database and their technology is strong

and settled. However, sometime they are not

suitable for the Web application and need to

convert the XML format that is compatible with

the Web technology. But the relational database

and XML technology are challenge with each

other with their advantages and disadvantages.

For this reasons, most of the users cannot

dispensable the usage of relational database and

still use it today. But sometime, the relational

data are needed to exchange between different

business and conversion to XML format is

required.

 The researchers have been focused on the

converting between relational and XML format.

They proposed many converting method from

relational database to XML schema. The earlier

methods have been applied the structural or

semantic point. But they did not measure their

converted XML schema and did not consider the

schema design factors such as modular,

maintainability effort, easier for human reader.

Based on our investigation, some of the attributes

in tables are generally same. But their attribute

names are different according to the desire of

database designer. For example, empname,

stdname, staffname are variation of name but the

database designer set the attribute name as their

desired. This case prevents the converting from

relational database to XML schema and

introduces the redundancy tags and increases

maintainability effort.

 Therefore, the proposed system converts the

relational database into the XML schema by

focusing on the important design factors. To

support the essential design factors, the proposed

system detect the general same attributes in the

relation using the string similarity measuring

methods. Then the same attributes are grouped

and created as element group in the schema

document to reduce code and more structure.

5. Architecture of the Proposed

System

Figure 1: Architecture of the proposed system

Relational

Database

Detecting the dependency, relationship,

cardinality, Key in the tables

Detecting the general same attributes

Maximum consecutive matching started

at right

Maximum consecutive matching at any

character

Non-consecutive Longest Common

string matching

XML Schema

Grouping the common attributes

 The architecture of the proposed system is

described in Figure 1. The relational database is

given as input and the final output is good XML

schema document. The first step of the proposed

system is detecting the dependencies between the

attributes of the relation by analyzing the keys of

the relations to get the highly nested structure.

Then the relationships and cardinality of the

relations are detected to create the relationship

between the elements in the schema. And then

the same attributes in the relations are grouped

by using similarity measuring methods (non-

consecutive string matching, maximum

consecutive matching started at left, maximum

consecutive matching started at right and

maximum consecutive matching at any character

and). They are described as follow.

Algorithm 1: non-consecutive Longest Common

Substring

Input : S1, S2 // two strings to compare

Output : Sc //common any character but

 not consecutive

 Begin

 i ← 0

 While (i < S1.length and S2.length>0)

 If S1i ⊆ S2 Then

 Sc ← Sc.concat(S1i)

 S2 ← S2\S1i

 End

 i ← i+1

 End

 Return Sc

End

Figure 2: Non-consecutive longest common

substring algorithm

 The algorithm 1 accepts two strings as input

and finds the common characters from the input

strings but these characters are not consecutive.

And then it produces the longest common

substring.

 Algorithm 2: Maximum consecutive Substring

 matching started at left

 Input : S1, S2 // two strings to compare

 Output : SMCSl // maximum consecutive sub

 string

 Begin

d ←| S1 |, t ← | S2 |

If d > t

 ri ← S2 , sj ← S1

Else

 ri ←S1 , sj ← S2

End if

While | ri | ≤ 1

 If ri ∊ sj; that is sj ∩ ri = ri

 return ri

 Else

 ri ← ri \ c k that is, remove the

 right-most character from ri

 End if

End while

End

Figure 3: Maximum consecutive substring at

left algorithm

 The algorithm 2 gets the two input strings

and produces the maximum consecutive string. It

produces the maximum left consecutive string.

 Algorithm 3: Maximum consecutive Substring

 matching started at right

 Input : S1, S2 // two strings to compare

 Output : SMCSn // maximum consecutive sub

 string

 Begin

d ←| S1 |, t ← | S2 |

If d > t

 ri ← S2 , sj ← S1

Else

 ri ←S1 , sj ← S2

End if

While | ri | ≥ 1

 If ri ∊ sj; that is sj ∩ ri = ri

 return ri

Else

 ri ← ri \ c k that is, remove the

 left-most character from ri

 End if

End while

End

Figure 4: Maximum consecutive substring at

right algorithm

 The algorithm 3 has the similar manner of

algorithm 2 because it also gets the two input

strings and produce the maximum consecutive

string. It produces the maximum right

consecutive string.

 Based on the discovery, the prefixes of the

some attributes are influenced by the table’s

name. For example Sname, Saddress, Stdphone

are the attributes of student table. The prefixs S

and Std are obstacles to calculate the similarity

of attributes. They are required to remove form

the attribute to improve the accuracy of the

similarity values. Therefore, the algorithm 1 is

applied to remove the prefix of the some

attributes in the relations.

 The algorithm 4 is also similar the previous

algorithms. But it accepts the two strings and

produces the maximum consecutive string that is

started at any character and consecutive.

 Algorithm 4: MaxConConsecutiveAny

 Input : S1, S2 // two strings to compare

 Output : SMCSany

 Begin

 If S1.length < S2.length then

 pattern ← S1

 target ← S2

 Else

 pattern ← S2

 target ← S1

 End If

 While (i < target. length)

 C ← pattern.Char(i)

 tempMax ← tempMax.concat (C)

 If tempMax ⊆ target then

 If tempMax.length > Max.length then

 Max ← tempMax

 End If

 Else

 tempMax ← tempMax \ leftmostchar

 i ← i+1

 End If

 End While

 Return Max

 End

Figure 5: Maximum consecutive substring at

any algorithm

 Then the similar attributes are normalized

using the following normalized equations to get

the accurate similarity values [1].

 The equation (1) is used for normalizing the

similar attributes that are produced by algorithm

1.

v1 = NSc (ri, sj) = ---(1)

 The equation(2) is applied for normalizing

the similar attributes that are produced by

algorithm 2.

v2 = NSMCSn (ri, sj) = ---(2)

 The equation(3) is used for normalizing the

similar attributes which are produced by

algorithm 3.

v3 = NSMCSany (ri, sj) = ---

 ----(3)

After normalization the strings, the value of each

normalize are evaluated the similarity use the

below equation. The similarity of the two strings

is:

 α = w1v1 +w2v2 + w3v3 -----(4)

where α is the similarity value of two strings.

Then, w1, w2, w3 are weights of each normalized

value and w1+w2+w3=1. The similar attributes

are grouped which are satisfied the threshold

value 0.5 and create them as the element group in

schema documents. Finally, the good XML

schema is generated to reduce the complexion of

code.

5.1 Illustration of XML schema document

 The following tables are in the relational

database.

SUPPLIER (S#, SNAME, STATUS, CITY)

SPJ (S#, P#, J#, QTY)

PROJECT (J#, JNAME, CITY)

PART (P#, PNAME, COLOR, WEIGHT, CITY)

 In the above tables, SNAME, JNAME,

PNAME are generally same because they are

represented for name. Therefore, NAME and

CITY are common in some tables and group

them as group element in XML schema

document. The final result of XML schema is

described in Figure 6.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd= "http://www.w3.org/

2001/XMLSchema">

<xsd:group name="GROUP">

 <xsd:sequence>

 <xsd:element name="NAME"

 type="xsd:string"/>

 <xsd:element name="CITY"

 type="xsd:string"/>

 </xsd:sequence>

</xsd:group>

<xsd:element name=”database”>

<xsd: element name= “SPJ”>

 <xsd:ComplexType>

 <xsd:sequence >

 <xsd:element name=”S#”

 type=”xsd:Integer”>

 <xsd:sequence maxOccur=”Unbound”>

 <xsd:element name=”SUPPLIER”>

 <xsd:ComplexType>

 <xsd:element name= “STATUS”

 type=”xsd:Integer”/>

 <xsd:group ref=”GROUP”/>

 </xsd:ComplexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:element>

 <xsd:element name=”J#”

 type=”xsd:Integer”>

 <xsd:sequence maxOccur=”Unbound”>

 <xsd:element name=”PROJECT”>

 <xsd:ComplexType>

 <xsd:group ref=”GROUP”/>

 </xsd:ComplexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:element>

 <xsd:element name=”P#”

 type=”xsd:Integer”>

 <xsd:sequence maxOccur=”Unbound”>

 <xsd:element name=”PART”>

 <xsd:ComplexType>

 <xsd:element name= “COLOR”

 type=”xsd:string”/>

 <xsd:element name= “WEIGHT”

 type=”xsd:Integer”/>

 <xsd:group ref=”GROUP”/>

 </xsd:ComplexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:element>

 <xsd:element name=”QTY”

 type=”xsd:Integer”/>

 </xsd:sequence>

 </xsd:ComplexType>

 </xsd: element>

</xsd:element>

</xsd:schema>

Figure 6: The generated xml schema

document using element group

 The output of the XML schema is more

structure and easier for human reader by

grouping the generally same attributes in the

relations. In real world, many relations are

included in the database. When more same

attributes are involved in the database, the

number of tags can be reduced in the schema

document and provide more modular the code.

6. Conclusion and Future work

 The proposed system is presented with two

new string matching algorithms to obtain the

generally common attributes in the database.

The resulted XML schema is presented with

example. The proposed system will reduces the

tags of the common attributes in each element

such as SNAME, PNAME and JNAME in XML

schema document. Therefore, the generated

XML schema is more modular and provides the

more understandability of the human reader.

Measuring the complexity and quality

(maintainability effort, reusability etc) of the

resulted XML schema design and measuring the

accuracy of the proposed algorithms will be

described in our ongoing tasks.

References

[1]Aminul Islam, Diana Inkpen, Iluju Kiringa,

“Applications of corpus-based semantic

similarity and word segmentation to database

schema matching”, Volume 17 Issue 5, Springer-

Verlag New York, Inc. Secaucus, NJ, USA,

August 2008.

[2] Andrew McDowell, Chris Schmidt, Kwok-

Bun Yue, Analysis and Metrics for XML

Schema, CSREA press 2004, ISBN:

1932415277, USA, 2004, pp. 538-544.

[3] Angela Cristina Duta, Ken barker and Reda

Alhajj,, “ConvRel: relationship conversion to

XML nested structure”, Proceedings of the 2004

ACM symposium on Applied computing, ACM

New York, NY, USA, 2004.

[4] Dilek Basci and Sanjay Misra, “Entropy as a

Measure of Quality of XML Schema Document”,

The International Arab Journal of Information

Technology, Vol. 8, No1, January 2011.

[5] Dongwon Lee, Murali Mani and Wesley W.

Chu, Nesting-based relational-to XML schema

translation, In Proceedings of International

Workshop on the Web and Databases, 2001, pp.

61-66.

[6] Dongwon Lee, Murali Mani and Wesley W.

Chu, NeT & CoT: Translating relational

schemas to XML schemas using semantic

constraints, In Proceedings of the 11
th

 ACM

International Conference on Information and

Knowledge Management, 2002, pp. 282-291.

[7] Dagwon Lee , Murali Mani and Wesley W.

Chu, “Effective Schema Conversions between

XML and Relational Models”, In European Conf.

on Artificial Intelligence (ECAI), Knowledge

Transformation Workshop (ECAI-OT), 2002.

[8] Jinhyung Kim, Dongwon Jeong and Doo-

Kwon Baik, A Translation Algorithm for

Effective RDB-to-XML Schema Conversion

Considering Referential Integrity Information,

Journal of Information Science and Engineering

25, 2009, pp 137-166.

[9] Joseph Fong, Anthony Fong, HK Wong and

Philip Yu, Translating relational schema with

constraints into XML schema, International

Journal of Software Engineering and Knowledge

Engineering IJSEKE, Volume 16, Issue 2, 2006,

pp 201-243.

[10] Rui Zhou, Chengfei Liu and Jianxin Li ,

Holistic constraint-preserving transformation

from relational schema into XML schema,

Proceedings of the 13th international conference

on Database systems for advanced applications,

Springer-Verlag Berlin, 2008.

